
Noname manuscript No.
(will be inserted by the editor)

Introducing A Cross Platform Open Source Cartesian
Genetic Programming Library

Andrew James Turner · Julian Francis Miller

the date of receipt and acceptance should be inserted later

Abstract Cartesian Genetic Programming (CGP) is a form of Genetic Program-
ming (GP) which encodes computational structures as generic cyclic/acyclic graphs.
This letter introduces a new cross platform Cartesian Genetic Programming Li-
brary intended for use in teaching, academic research and real world applica-
tions. This new CGP library is currently capable of evolving symbolic expressions,
Boolean logic circuits and Artificial Neural Networks but can easily be extended
to other domains. The CGP library, documentation and tutorials are all available
at www.cgplibrary.co.uk.

Keywords Cartesian Genetic Programming · Software Library · NeuroEvolution

1 Introduction

Cartesian Genetic Programming (CGP) [10] is a form of Genetic Programming
(GP) [6] which encodes graph-based computational structures. CGP has had over
15 years of development [8] and has been shown to have a number of advantages
over traditional GP [10]. These advantages include: resilience to bloat [9] [18], the
presence of neutral genetic drift which has been shown to aid the search process
[12] [21] [23], native support for multiple input multiple output problems, capable
of creating cyclic as well as acyclic graphs [20], and allows for internally calculated
values to be reused multiple times [10].

Andrew James Turner
The University of York
Electronics Department
Intelligent Systems Group
York, UK
E-mail: andrew.turner@york.ac.uk

Julian Francis Miller
The University of York
Electronics Department
Intelligent Systems Group
York, UK
E-mail: julian.miller@york.ac.uk

www.cgplibrary.co.uk

2 Andrew James Turner, Julian Francis Miller

Despite these advantages CGP has not been adopted to the same extent as
standard GP [22]. Key necessities for a method or technique becoming widely
used are benefits over other methods, ease of use and availability. Currently a
number of CGP implementations are available at the CartesianGP homepage [11].
However these implementations are typically under documented, unfriendly to new
users and adapting them to new situations requires editing and understanding of
the code base.

This letter introduces a new CGP library intended to be of use in teaching,
academic research and applications. What distinguishes this implementation from
others is that it defines a well documented CGP Application Programming Inter-
face (API); as opposed to a graphical or command line tool. This API provides
functionality for high level applications of CGP to a given task, lower level cus-
tomisation of the CGP algorithm and deploying evolved programs in their intended
applications. The library should be thought of as a set of tools for working with
CGP. An advantage of using a well defined API is that the user does not need to
understand or edit the underlying implementation in order to use the CGP library.
Additionally users can benefit from backwards compatible updates to the library.
An advantage of creating a compiled library is that it can be used natively by
the C and C++ programming languages but also imported into other languages
including Python. The CGP library can also be compiled for a wide range of op-
erating systems as it only depends upon standard C libraries. The CGP library
also comes with complete documentation and numerous tutorials intended to ease
the learning curve.

The rest of the letter is structured as follows. Section 2 describes CGP, Section
3 introduces the new CGP library, Section 4 describes the basic use of the CGP
library, Section 5 gives planned future developments of the CGP library and finally
Section 6 gives a closing discussion.

2 Cartesian Genetic Programming

CGP [10] [13] is a form of GP [6] which typically evolves acyclic computational
structures of nodes (graphs) indexed by their Cartesian coordinates. CGP does not
suffer from bloat [9] [18]; a drawback of many GP methods [15]. CGP chromosomes
contain non-functioning genes enabling neutral genetic drift during evolution [21]
[23]. CGP typically uses point or probabilistic mutation, no crossover and a (1+λ)-
ES. Although CGP chromosomes are of static size, the number of active nodes
varies during evolution enabling variable length phenotypes. The user therefore
specifies a maximum number of nodes, of which only a proportion will be active.
Overestimating the number of nodes has shown to greatly aid evolution [12]; which
is thought to heighten neutral genetic drift.

Each CGP chromosome comprises of function genes (Fi), connection genes (Ci)
and output genes (Oi). The function genes represent indexes in a function look-up-
table and describe the functionality of each node. The connection genes describe
from where each node gathers its inputs. For regular acyclic CGP, connection
genes may connect a given node to any previous node in the program, or any of
the program inputs. The output genes address any program input or internal node
and define which are used as program outputs.

Open Source Cartesian Genetic Programming Library 3

Originally CGP programs were organized with nodes arranged in rows (nodes
per layer) and columns (layers); with each node indexed by its row and a column.
However, this is an unnecessary constraint, as any configuration possible using
a given number of rows and columns is also possible using one row with many
columns; provided the total number of nodes remains constant. This is due to CGP
being capable of evolving where each node connects its inputs. Consequently, the
CGP library defines chromosomes with one row and n columns; with each node
only indexed by its column. A generic (one row) CGP chromosome is given in
Equation 1; where α is the arity of each node, n is the number of nodes and m is
the number of program outputs.

F0C0,0...C0,αF1C1,0...C1,α FnCn,0...Cn,αO0...Om (1)

An example CGP program is given in Figure 1 with its corresponding chromo-
some. As can be seen, all nodes are connected to previous nodes or program inputs.
Not all program inputs have to be used, enabling evolution to decide which inputs
are significant. An advantage of CGP over tree-based GP, again seen in Figure 1,
is that node outputs can be reused multiple times, rather than requiring the same
value to be recalculated if it is needed again. Finally, not all nodes contribute to
the final program output, these represent the inactive nodes which enable neutral
genetic drift and make variable length phenotypes possible.

Fig. 1 Example CGP program corresponding to the chromosome: 012 233 124 4

3 CGP Library

The CGP library is intended to be used for teaching, academic research and real
world applications. This is a very broad scope which is achieved by hiding detail
from the user until required, maintaining a well documented API and providing
extra tools for specific scenarios.

For instance, in the case of teaching, the CGP library can be applied to a
given task with very little “boilerplate” code; see Section 4. Then if required all
of the typical parameters (mutation rate, µ, λ, evolutionary strategy, etc) can be
controlled via simple set functions. Additionally each evolutionary stage (selection
scheme, fitness function etc) can be inspected and edited in isolation. All of this is
achieved through the API and so details can be hidden or introduced as required.

In the case of academic research, the ability to control evolutionary parameters
and implement custom evolutionary stages becomes important. Nearly all of the
evolutionary stages used by the CGP library can be redefined to custom versions
using the API. Additional functionality is provided to conduct multiple runs to

4 Andrew James Turner, Julian Francis Miller

assess average behaviour. The ability to set random number seeds in order to
repeat experiments is provided. Additionally results can be saved to easily parsed
comma separated value (.csv) files for storage and further analysis.

In the case of real world applications, extra functions are provided to save, load
and execute individual chromosomes. This enables found solutions to be stored,
distributed and deployed in their intended application. The ability to remove in-
active nodes is also provided to reduce the size of saved and loaded chromosomes.

In all cases accessibility and ease of use are always important. To this end
CGP is an open source project available at www.cgplibrary.co.uk with the devel-
opment code hosted with github [14] at https://github.com/AndrewJamesTurner/

CGP-Library. The ease of use comes from providing a simple API, full documen-
tation and numerous tutorials introducing various aspects of the library with ex-
ample code.

“Out of the box” the CGP library can be used for symbolic regression, creating
Boolean logic circuits and Artificial Neural Networks. However, the CGP library
also allows users to define their own custom node functions; using the API. There-
fore the CGP library can be applied to many additional domains. By default the
CGP library fitness function is configured for supervised learning tasks, but by
implementing custom fitness functions CGP can also be applied to reinforcement
learning.

3.1 Visualisation

Visualisation tools are often useful in order to gain an understanding of the so-
lutions found or attempted during evolution. The CGP library currently provides
three methods for inspecting chromosomes.

The first function, printChromosome, displays chromosomes as text in the ter-
minal / command prompt. A typical CGP chromosome displayed using printChro-

mosome is given in Table 1. Each input and functioning node is labelled with its
index in the chromosome. There is a textual description of the node e.g. input for
input nodes or the operation for the function nodes. Function node operations are
followed by space separated values describing each node’s inputs. Active nodes are
also labelled with an ‘*’. Finally the last line gives the nodes used as chromosome
outputs.

Table 1 Example CGP chromosome displayed using printChromosome.

(0): input
(1): sin 0 *
(2): mul 0 0
(3): mul 0 1 *
(4): add 1 3 *
(5): div 1 0
(6): div 2 5
(7): sin 1
(8): mul 4 1 *
outputs: 8

www.cgplibrary.co.uk
https://github.com/AndrewJamesTurner/CGP-Library
https://github.com/AndrewJamesTurner/CGP-Library

Open Source Cartesian Genetic Programming Library 5

The second method for visualising CGP chromosomes makes use of the
open source cross platform Graphviz utility [1]. The CGP library function
saveChromosomeDot creates a Graphviz “.dot” file which can be used by Graphviz
to create a image similar to that in Figure 2. The chromosomes are displayed with
the inputs on the left, outputs on the right and the position of the internal nodes
optimised by Graphviz. Function nodes are labelled with their functionality and
given in bold if active.

Input 0

sin

mul

mul

div

add

sin

mul

div

Output 0

Fig. 2 Example CGP chromosome displayed using saveChromosomeDot.

The third method for visualising CGP chromosomes makes use of the open
source cross platform LATEX typesetting program [7]. The CGP library function
saveChromosomeLatex creates a LATEX “.tex” file which can be used by LATEX (or
pdfLaTeX) to create an equation similar to that in Equation 2. Equation 2 gives
a mathematical description of the same chromosome given in Table 1 and Figure
2. Where x0 is the single program input and f0(x0) is the mapping between this
input and the single chromosome output1. This equation represents the phenotype
behaviour of the chromosomes and so only represents the functionality of the active
nodes in the chromosome. The previous two methods show the functionality of the
active and inactive nodes.

f0(x0) = ((sin(x0) + (x0 × sin(x0))) × sin(x0)) (2)

These three very distinct methods for visualising CGP chromosomes should
enable users to gain an understanding of the evolved solutions. Additionally CGP
chromosomes can be saved, using saveChromosome, to an easily parsed “.csv” file.
This file could be read by other tools for more bespoke visualisation.

3.2 NeuroEvolution

NeuroEvolution is a recent application of CGP termed Cartesian Genetic Pro-
gramming of Artificial Neural Networks (CGPANN) [5] [16]. NeuroEvolution is

1 For simplicity, here a single input single output CGP chromosome has been displayed.
However CGP is also capable of creating multiple input multiple output programs.

6 Andrew James Turner, Julian Francis Miller

the application of Evolutionary Algorithms towards the training of Artificial Neu-
ral Networks (ANN). CGPANN utilises CGP to evolve the connection weights and
topology [17] of ANNs. CGPANN is also capable of evolving both homogeneous
and heterogeneous ANNs [19].

The CGP library is capable of using CGP to evolve ANNs by simply using
suitable node functions i.e. logistic sigmoid. The necessary connection weights are
always present in the CGP library but ignored unless required. The range of the
the connections weights, and other parameters associated with evolving ANNs,
can also be set through the API.

3.3 Licenses

CGP library is released under the open source GNU lesser general public license
version 3 [3]. The library is released under the lesser general public license so it
can be used in commercial applications under the conditions given in the license.
The documentation associated with the CGP library is released under the open
source GNU Free Documentation License version 1.3 [2].

4 Using the CGP Library

Complete documentation for the CGP library, including installation, tutorials and
the API can be found at www.cgplibrary.co.uk. In this section only a basic use
case is described.

The CGP library uses a number of structures to store data associated with
the library; such as the CGP library parameters, training sets and chromosomes.
Functions are provided to initialise and free these structures.

A parameters structure is used to store the general parameters which control
the evolutionary strategy used by CGP; for instance it describes the selection
scheme and mutation method to be used. The parameters structures are initialised
using initialiseParameters which takes as arguments the dimensions of the chromo-
somes to be evolved. Many of the default values stored in parameters structures,
such as the selection scheme, can be altered but this is not necessary for basic
use. Newly initialised parameters structures contain an empty function set and it
is the responsibility of the user to populate this function set with functions. This is
achieved using addNodeFunction which takes as arguments an initialised parameters

structure and a comma separated string of function names. There are currently 24
possible node functions separated into three types2: symbolic functions, Boolean
logic gates and neuron transfer functions. For inspections of the status of the pa-

rameters structure printParameters displays the stored parameters in the terminal
/ command prompt.

The dataSet structures store training or testing data which can be used by the
fitness function when assigning fitnesses to chromosomes. The dataSet structures

2 Interestingly using a mixture of these three types is also possible.

www.cgplibrary.co.uk

Open Source Cartesian Genetic Programming Library 7

can be initialised using initialiseDataSetFromFile which takes as arguments the
location of the file containing the training/testing data; given in a specific format3.

Once a parameters structure (with a populated function set) and a dataSet

structure have been initialised, CGP can be applied to a given task. This can
be achieved using runCGP which takes as arguments a parameters and dataSet

structure as well as the number of generations allowed before terminating the
search. After runCGP has terminated it returns an initialised chromosome structure
containing the best chromosome (solution) found. This chromosome structure can
be visualised using printChromosome.

As can be seen, very little “boilerplate” code is required to use the CGP li-
brary. Additionally, repeatedly applying CGP to a given task to determine average
behaviour requires only slight modification and the use of repeatCGP instead of
runCGP.

Example C code which follows the previous description is given in Listing 1.
As can be seen very few lines of C are required to apply CGP to a given task.

Listing 1 Example use of CGP library.

#include <stdio.h>

#include <cgp.h>

int main(void){

struct parameters *params = NULL;

struct dataSet *trainingData = NULL;

struct chromosome *chromo = NULL;

int numInputs = 1;

int numNodes = 50;

int numOutputs = 1;

int nodeArity = 2;

int numGens = 1000;

params = initialiseParameters(numInputs , numNodes ,

numOutputs , nodeArity);

addNodeFunction(params , "add ,sub ,mul ,div");

printParameters(params);

trainingData = initialiseDataSetFromFile("temp.data");

chromo = runCGP(params , trainingData , numGens);

printChromosome(chromo);

3 The first line contains the number of inputs, outputs and the number of data samples.
Subsequent lines contain the inputs followed by the outputs for each sample. All values are
comma separated.

8 Andrew James Turner, Julian Francis Miller

freeDataSet(trainingData);

freeChromosome(chromo);

freeParameters(params);

return 0;

}

5 Future Developments

The CGP library is currently on its first release (V1.0) and allows for basic use
of CGP. This section discusses planned future developments of the CGP library.
Additional requests for features can be sent to andrew.turner@york.ac.uk.

Additional Node Functions. The CGP library currently contains twelve symbolic
functions, seven Boolean logic functions and five neuron transfer functions. This
set of functions will continue to be extended over future releases. Additionally,
users can also define their own node functions through the API.

Recurrent CGP. CGP can be used to create cyclic (recurrent) as well as acyclic
graphs [20]. Currently the CGP library only creates acyclic programs and will be
extended to be also capable of creating cyclic programs. This will allow application
to partially observable tasks as well as creating recurrent ANNs.

Custom Mutation Methods. Currently the CGP library provides no functionality
to create custom mutation methods through the API. Instead common mutation
methods used by CGP are provided by the library. The ability to create custom
mutation methods using the API will be included in future releases.

Optimisation. The initial goal of the CGP library was to be simple to use and
extendible. Now this has been achieved the focus will change so as to also include
speed optimisation; an important aspect of machine learning.

Additional Language Bindings. As the CGP library is compiled into a shared object
/ dynamic library it can be bound to other languages. The intention is to at least
provide bindings for python using the ctypes package [4].

6 Discussion

This letter has introduced a new cross platform open source CGP library intended
for teaching, academic research and real world applications. What distinguishes
this CGP library from previous implementations is that it defines a well docu-
mented API which can be used to apply CGP to many areas. For instance it can
be used to apply CGP to a given task, used as the “back-end” to implement other
CGP software (such as a CGP command line tool) or used in real applications to
implement evolved solutions.

andrew.turner@york.ac.uk

Open Source Cartesian Genetic Programming Library 9

The CGP library also includes full documentation and tutorials. This is in-
cluded to ease the learning curve for new users and to introduce more advanced
features of the library. It is hoped that this new CGP library will encourage others
to try CGP as an alternative to traditional GP.

As of now the CGP library is on its first (non-beta) release and is still un-
der active development. For further details, feature requests, bug reports or to
contribute please contact andrew.turner@york.ac.uk.

References

1. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphvizopen source
graph drawing tools. In: Graph Drawing, pp. 483–484. Springer (2002)

2. GNU: GNU Free Documentation License (2014). URL https://www.gnu.org/licenses/
fdl.html

3. GNU: GNU Lesser General Public License (2014). URL https://www.gnu.org/licenses/
lgpl.html

4. Heller, T.: ctypes (2014). URL https://pypi.python.org/pypi/ctypes
5. Khan, M.M., Ahmad, M.A., Khan, M.G., Miller, J.F.: Fast learning neural networks using

Cartesian Genetic Programming. Neurocomputing 121, 274–289 (2013)
6. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Nat-

ural Selection. MIT Press, Cambridge, MA, USA (1992)
7. Lamport, L.: LaTeX: User’s Guide & Reference Manual. Addison-Wesley Publishing Com-

pany, Inc. (1986)
8. Miller, J.F.: An empirical study of the efficiency of learning boolean functions using a

cartesian genetic programming approach. In: Proceedings of the Genetic and Evolutionary
Computation Conference, vol. 2, pp. 1135–1142. Citeseer (1999)

9. Miller, J.F.: What bloat? Cartesian genetic programming on Boolean problems. In: 2001
Genetic and Evolutionary Computation Conference Late Breaking Papers, pp. 295–302
(2001)

10. Miller, J.F.: Cartesian Genetic Programming. Springer (2011)
11. Miller, J.F.: cartesiangp (2014). URL http://www.cartesiangp.co.uk/
12. Miller, J.F., Smith, S.: Redundancy and computational efficiency in Cartesian genetic

programming. Evolutionary Computation, IEEE Transactions on 10(2), 167–174 (2006)
13. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proceedings of the

Third European Conference on Genetic Programming (EuroGP), vol. 1820, pp. 121–132.
Springer-Verlag (2000)

14. Preston-Werner, T., Wanstrath, C., Hyett, P.: github (2014). URL https://github.com/
15. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and a review

of past and current bloat theories. Genetic Programming and Evolvable Machines 10(2),
141–179 (2009)

16. Turner, A.J., Miller, J.F.: Cartesian Genetic Programming encoded Artificial Neural Net-
works: A Comparison using Three Benchmarks. In: Proceedings of the Conference on
Genetic and Evolutionary Computation (GECCO-13), pp. 1005–1012 (2013)

17. Turner, A.J., Miller, J.F.: The Importance of Topology Evolution in NeuroEvolution: A
Case Study Using Cartesian Genetic Programming of Artificial Neural Networks. In:
Research and Development in Intelligent Systems XXX, pp. 213–226. Springer (2013)

18. Turner, A.J., Miller, J.F.: Cartesian Genetic Programming: Why No Bloat? In: Genetic
Programming: 17th European Conference, EuroGP-2014, LNCS, vol. 8599, pp. 193–204.
Springer (2014)

19. Turner, A.J., Miller, J.F.: Neuroevolution: The importance of transfer function evolution
and heterogeneous networks. In: Proceedings of the 50th Anniversary Convention of the
AISB, pp. 158–165 (2014)

20. Turner, A.J., Miller, J.F.: Recurrent Cartesian Genetic Programming. In: 13th Interna-
tional Conference on Parallel Problem Solving from Nature (PPSN 2014), LNCS, vol.
8672, pp. 476–486 (2014)

21. Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital Circuit
Evolution. In: Proc. International Conference on Evolvable Systems, LNCS, vol. 1801, pp.
252–263. Springer Verlag (2000)

andrew.turner@york.ac.uk
https://www.gnu.org/licenses/fdl.html
https://www.gnu.org/licenses/fdl.html
https://www.gnu.org/licenses/lgpl.html
https://www.gnu.org/licenses/lgpl.html
https://pypi.python.org/pypi/ctypes
http://www.cartesiangp.co.uk/
https://github.com/

10 Andrew James Turner, Julian Francis Miller

22. White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kronberger, G.,
Jaśkowski, W., OReilly, U.M., Luke, S.: Better GP benchmarks: community survey results
and proposals. Genetic Programming and Evolvable Machines 14(1), 3–29 (2013)

23. Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function landscape. In:
Genetic programming, LNCS, pp. 204–217. Springer (2001)

	Introduction
	Cartesian Genetic Programming
	CGP Library
	Using the CGP Library
	Future Developments
	Discussion

