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Abstract. This paper formally introduces Recurrent Cartesian Genetic
Programming (RCGP), an extension to Cartesian Genetic Programming
(CGP) which allows recurrent connections. The presence of recurrent
connections enables RCGP to be successfully applied to partially ob-
servable tasks. It is found that RCGP significantly outperforms CGP on
two partially observable tasks: artificial ant and sunspot prediction. The
paper also introduces a new parameter, recurrent connection probability,
which biases the number of recurrent connections created via mutation.
Suitable choices of this parameter significantly improve the effectiveness
of RCGP.

1 Introduction

Cartesian Genetic Programming (CGP) [1] is a form of Genetic Programming
(GP) [2] which encodes graph-based computational structures. CGP typically
evolves acyclic programs which are only suited to fully observable tasks; when
the desired outputs are purely a function of the current inputs. However, many
tasks are partially observable and require that previous, as well as current, inputs
be considered when calculating outputs. To be applicable to partially observable
tasks CGP requires the ability to create programs which hold internal state in-
formation; that is to say, some form of memory/feedback. Previously traditional
GP has been implemented with memory and feedback using explicit indexed
memory [3] and Jordan type architectures [4] respectively.

This paper formally introduces Recurrent Cartesian Genetic Programming
(RCGP), an extension to CGP which allows the creation of recurrent / cyclic
graphs. RCGP has the ability, through feedback, to store internal state infor-
mation making it suited to partially observable tasks. Recurrent connections are
controlled by a new parameter, recurrent connection probability, which defines
the likelihood of mutations creating a recurrent connection.

The aim of the paper is to apply and compare CGP and RCGP on partially
observable tasks. The study has been undertaken to highlight that there are
types of problems for which CGP is currently unsuitable, but to which RCGP
can be successfully applied. The aim is not to compare RCGP’s performance
with other methods suited to partial observable tasks. This is left for further
research.
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The remainder of the paper is organized as follows: Section 2 describes CGP,
Section 3 introduces RCGP, Section 4 describes the experiments used to compare
CGP and RCGP, Section 5 describes the benchmarks used in the experiments,
Section 6 presents the results, Section 7 gives a discussion of the findings and
finally Section 8 gives closing conclusions.

2 Cartesian Genetic Programming

CGP [1] [5] is a form of GP [2] which typically evolves acyclic computational
structures of nodes (graphs) indexed by their Cartesian coordinates. CGP does
not suffer from bloat [6] [7]; a drawback of many GP methods [8]. CGP chromo-
somes contain non-functioning genes enabling neutral genetic drift during evo-
lution [9] [10]. CGP typically uses point or probabilistic mutation, no crossover
and a (1 + λ)-ES. Although CGP chromosomes are of static size, the number of
active nodes varies during evolution enabling variable length phenotypes. The
user therefore specifies a maximum number nodes, of which only a proportion
will be active. Overestimating the number of nodes has shown to greatly aid
evolution [11]; which is thought to heighten neutral genetic drift but could also
be compensating for length bias [12].

Each CGP chromosome comprises of function genes (Fi), connection genes
(Ci) and output genes (Oi). The function genes represent indexes in a function
look-up-table and describe the functionality of each node. The connection genes
describe from where each node gathers its inputs. For regular acyclic CGP, con-
nection genes may connect a given node to any previous node in the program,
or any of the program inputs. The output genes address any program input or
internal node and define which are used as program outputs.

Originally CGP programs were organized with nodes arranged in rows (nodes
per layer) and columns (layers); with each node indexed by its row and a col-
umn. However, this is an unnecessary constraint, as any configuration possible
using a given number of rows and columns is also possible using one row with
many columns; provided the total number of nodes remains constant. This is due
to CGP being capable of evolving where each node connects its inputs. Conse-
quently, here the chromosomes are defined with one row and n columns; with
each node only indexed by its column. A generic (one row) CGP chromosome is
given in Equation 1; where α is the arity of each node, n is the number of nodes
and m is the number of program outputs.

F0C0,0...C0,αF1C1,0...C1,α ...... FnCn,0...Cn,αO0...Om (1)

An example CGP program is given in Figure 1 along with its corresponding
chromosome. As can be seen, all nodes are connected to previous nodes or pro-
gram inputs. Not all program inputs have to be used, enabling evolution to decide
which inputs are significant. An advantage of CGP over tree-based GP, again seen
in Figure 1, is that node outputs can be reused multiple times, rather than requir-
ing the same value to be recalculated if it is needed again. Finally, not all nodes
contribute to the final program output, these represent the inactive nodes which
enable neutral genetic drift and make variable length phenotypes possible.
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Fig. 1. Example CGP program corresponding to the chromosome: 012 233 124 4

3 Recurrent Cartesian Genetic Programming

Although RCGP has never been formally presented, it has been previously dis-
cussed as a possible extension to CGP [1]. RCGP has also been used as a method
for removing length bias1 [12] when investigating why CGP does not suffer from
bloat [7]. Additionally a form of CGP has been used which implemented a Jordan
type architecture [13] for allowing feedback [14]. Here the application was Carte-
sian Genetic Programming of Artificial Neural Networks (CGPANN) [15,16]; a
NeuroEvolutionary technique based on CGP. Although using Jordan type archi-
tectures represents a simple method for allowing recurrent connections, it does
so in a very restricted form. For instance, the user must decide in advance how
many and what type of recurrent connections will be used.

3.1 Recurrent Cartesian Genetic Programming Implementation

In CGP, connection gene values are restricted so as to only allow acyclic con-
nections. In RCGP this restriction is lifted so as to allow connections between
a given node and any other node in the program (including itself) or program
inputs. An example program which could be generated using RCGP is given in
Figure 2 along with the corresponding chromosome.

RCGP phenotypes are executed similar to CGP phenotypes. Starting at the
active node closest to the inputs, each node calculates its output value based on
its inputs. Once all active nodes have been updated, the program outputs are
recorded. However, with the presence of recurrent connections, a nodes output
can be required before it has been calculated. To deal with this, all the nodes are
initialised to output zero until they calculate their own value. Therefore when
executing a RCGP phenotype the the following process is used:

1. set all active nodes to output zero
2. apply the next set of program inputs
3. update all active nodes once from program inputs to program outputs
4. read the program outputs
5. repeat from 2 until all program input sets have been applied

It should be noted that the program outputs are read once for each set of ap-
plied program inputs. It would also be possible to execute the program multiple

1 Although through email correspondence with Brian Goldman it may be the case
that RCGP only serves to alter the length bias rather than remove it.
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Fig. 2. Example RCGP program cosponsoring to the chromosome: 212 005 134 5

times for each set of program inputs. In such a case, the average of the program
outputs or the settled program outputs2 could be taken. The method described
here was chosen for its simplicity and because there is no guarantee that the
program outputs would ever settle.

A drawback of placing no constraints on connection gene values is that, on
average, mutations to connection genes will result in as many feed-forward con-
nections as recurrent. As it is highly unlikely that many tasks will require fifty
percent of connections to be recurrent, this places a bias towards possibly un-
suitable areas in the solution space. For this reason, a new parameter is intro-
duced which controls the likelihood of mutations creating recurrent connections.
This parameter is called recurrent connection probability. A recurrent connection
probability of zero percent results in only feed-forward connections (i.e. regular
CGP). A recurrent connection probability of fifty percent results in mutations
causing as many feed-forward connections as recurrent (i.e. RCGP without the
new parameter). A recurrent connection probability of one hundred percent re-
sults in only recurrent connections. It should be noted that this parameter does
not directly control the number of recurrent connections, only the probability of
mutations creating recurrent connections.

An important property of CGP is that the active nodes can be determined
before executing the program. This is significant as a high proportion of nodes
are often inactive [11] and calculating their outputs wastes computation time.
To determine which nodes are active the following algorithm is used [1]: 1) add
each program output node to a list of active nodes 2) for each node added to the
active node list, add the nodes to which they also connect 3) continue until the
program inputs are reached. Determining the active nodes for RCGP follows a
similar algorithm except only nodes which are not currently in the active node
list are added. This extra criteria breaks cycles enabling active nodes to be
determined for RCGP.

3.2 Implications of Recurrent Connections

An implication of RCGP is that it is now possible for chromosomes to describe
phenotypes where none of the active nodes connect to the program inputs. These
programs are therefore unsuited to any realistic task. However such programs
will likely score a low fitness and be quickly dropped from the population.

2 Where settled output refers to the converged program output value(s) after many
updates of the active nodes whilst applying the same program inputs.



480 A.J. Turner and J.F. Miller

Another implication of allowing recurrent connections occurs when applying
RCGP to tasks where each set of inputs are independent from each other. For
example, suppose we are trying to evolve a program that can implement a six
bit parity circuit. Normally, we think of each line of the truth table as being
independent of one another (i.e. the order in which each set of inputs occurs
is unimportant). If the fitness function always tests each line of the truth table
in the same order, RCGP could in principle use previous inputs to “predict”
the correct output. This was shown to be the case in [7]. In an extreme case,
RCGP could “predict” the correct outputs without ever considering the program
inputs3. It is therefore important that RCGP should only be applied to tasks
where the series of inputs are related, such as in time series prediction; otherwise
additional precautions would be required to prevent this behaviour.

4 Experiments

The experiments presented are designed to test if RCGP is a suitable extension
to CGP when solving partially observable tasks. As RCGP is implemented using
the recurrent connection probability, this parameter is varied over [0, 10, 20, 50]
percent. Where zero percent is equivalent to CGP, fifty percent is equivalent to
RCGP without the additional parameter and ten and twenty percent represents
RCGP with lower biases for recurrent connections.

If RCGP achieves statistically significantly better fitness than CGP on the
given tasks, then RCGP will be considered a suitable extension to CGP when
solving partially observable problems. If biasing the level of recurrence is shown
to statistically significantly influence fitness, then the recurrent connection prob-
ability will be considered a suitable parameter for RCGP.

As this is the first time RCGP has been investigated it is unknown how the
number of available nodes will influence results. For this reason each experiment
is repeated over a range of available nodes [10, 20, ..., 90, 100] to ensure a fair
comparison between CGP and RCGP. Other than the parameters previously
given, the following are used throughout the experiments: (1+4)-ES, 3% proba-
bilistic mutation and a node arity of two. The results presented are the average
fitness of fifty independent runs. Each run is given ten thousand generations
before terminating the search.

5 Benchmarks

Two partially observable benchmarks are used in the described experiments,
Artificial Ant and Sunspots. The Artificial Ant benchmark is a reinforcement
learning control task and the Sunspots benchmark is a supervised learning series
forecasting task.

3 This was shown to be the case in unpresented results where RCGP “solved” the six
bit parity task without any inputs!
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5.1 Artificial Ant

The Artificial Ant problem [17] is a classic challenging [18] benchmark commonly
used by GP [2]. The task is to design a controller which navigates an ant around
a toroidal map maximising food intake. The ant can only perceive whether the
location ahead of is current position contains food. Each time step the ant un-
dertakes one of four actions: move forward, turn left 90◦, turn right 90◦ or do
nothing. The map used here is the “Santa Fe Ant Trail”[2] given in Figure 3.

(a) The “Santa Fe Ant Trail”.
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(b) Yearly recorded sunspots.

Fig. 3. (a) Depiction of the “Santa Fe Ant Trail”. Black and white represent food and
no food respectively. (b) Yearly number of recorded sunspots.

In this paper the form of the controller differs from that commonly used
by GP [2]. Here the evolved program’s inputs describe if the location ahead
contains food and the program’s outputs are decoded into one of the possible
four actions; this is not dissimilar to the original implementation [17]. Other GP
implementations [2] create programs where the program inputs are the possible
actions and the program outputs are unused. The function set used by the nodes
causes the inputs (actions) to either be implemented outright or to be conditional
on whether food is ahead. Once the program outputs are reached the program
starts over. CGP has previously been applied to the benchmark in its more
commonly used form [5].

In this paper, the evolved controllers have two mutually exclusive inputs,
whereby the first input is set as ‘1’ if the location ahead of the ant contains
food, else it is set as ‘0’. The controller has two outputs, where: [1 1] represents
move forward, [0 1] turn right, [1 0] turn left and [0 0] do nothing. The ant starts
in the top left (0, 0) of the toroidal map facing east and is allowed 400 time steps
to consume as much food as possible. The amount of food eaten is then used as
the fitness measure; out of a maximum 89. The function set used comprises of
the four Boolean logic gates: AND, OR, NOT, and XOR.
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5.2 Sunspots

The Sunspots benchmark [19] is a commonly used [20] time series prediction
benchmark which describes the number of observed sunspots dating back to
1700. The data was recorded by the SIDC-team, at the World Data Center for
the Sunspot Index, Royal Observatory of Belgium [19]. The dataset contains the
yearly number of recorded sunspots between 1700 and 1987; given in Figure 3.
The first 221 years (1700-1920) are used as the training set with the remaining
67 years (1921-1987) used as the testing set.

Most series forecasters which are applied to the Sunspots benchmark use
multiple inputs consisting of the current and previous years number of sunspots.
However, in this paper only one input is used which gives the current number of
sunspots. This restriction to one input was imposed to force the task to become
partially observable. This restriction also makes the task much more challenging
since any trends in the data must be calculated internally as the data is passed
in year by year. The single output is the predicted number of sunspots 35 years
ahead of the current input. The single input to the series forecaster is normalised
into a [0, 1] range by dividing by two hundred (a value greater than the highest
number of sunspots in any observed year). The single output is also multiplied
by two hundred before being used as the predicted number of sunspots.

The fitness measure is the mean average error (MAE) given by: 1
N

∑N
i=1 |ei|

where N is the number of samples and e is the difference between the actual
and predicted number of sunspots. The function set used for this task comprises
of ten symbolic expressions: x1 + x2, x1 − x2, x1 × x2, xi ÷ xj , |x1|, x2

1, x
3
1, e

x1 ,
sin(x1) and cos(x1). Where x1 and x2 are the two inputs to each node and the
division operator is protected so as to return one when dividing by zero.

6 Results

The the average fitnesses (from 50 runs) achieved using RCGP are given for the
Artificial Ant and Sunspots benchmarks in Figure 4. It should be recalled that
a recurrent connection probability of zero percent is equivalent to regular CGP.
The average generalisation performance on the Sunspot testing set is also given
in Figure 5 along with an example forecaster created using one hundred nodes
and a recurrent connection probability of ten percent.

To identify if the differences due to the recurrent connection probability seen
in Figure 4 are statistically significant the results are analysed using the non-
parametric two sided Mann-Whitney U-test. When using the U-test p<0.05 in-
dicates statistical significance between two sets of data. Tables 1 and 2 give the
p values when comparing pairs of recurrent connection probabilities using ten,
twenty and one hundred nodes for the Artificial Ant and Sunspot (training set)
benchmarks.

As can be seen in Figure 4 and Tables 1 and 2, a recurrent connection prob-
ability of zero percent consistently performs worst on both benchmarks with
statistical significance. This demonstrates that there are types of tasks which
regular CGP is not suited to but to which RCGP can be successfully applied.
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Fig. 4. Results of applying RCGP on the two benchmark
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Fig. 5. Generalisation of RCGP on the Sunspot test set

When comparing recurrent connection probabilities, it can be seen that lower
percentages (ten and twenty) give statistically significantly better results on
the Artificial Ant benchmark than higher percentages (fifty). On the Sunspots
benchmark the opposite is true, with higher levels producing the best results
on the training set. However, this greater performance on the training set is
accompanied by weaker generalisation on the testing set; seen in Figure 5.

7 Discussion

The results given in Section 6 clearly demonstrate that CGP is unsuitable for
partially observable tasks. This is not a surprising result as CGP has no capacity
to recall previous inputs or infer internal state information. For instance the best
strategy CGP could find for the Artificial Ant task was to rotate until food is
ahead, and then move forward.
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Table 1. Artificial Ant: p values comparing pairs of recurrent connection probabilities

0% 10% 20% 50%

0% 1 ∼0 ∼0 ∼0
10% - 1 0.274 0.118
20% - - 1 0.576
50% - - - 1

(a) 10 Nodes

0% 10% 20% 50%

0% 1 ∼0 ∼0 ∼0
10% - 1 0.391 0.025
20% - - 1 0.002
50% - - - 1

(b) 50 Nodes

0% 10% 20% 50%

0% 1 ∼0 ∼0 ∼0
10% - 1 0.260 2E-5
20% - - 1 2E-4
50% - - - 1

(c) 100 Nodes

Table 2. Sunspots: p values comparing pairs of recurrent connection probabilities

0% 10% 20% 50%

0% 1 ∼0 ∼0 ∼0
10% - 1 0.022 0.021
20% - - 1 0.759
50% - - - 1

(a) 10 Nodes

0% 10% 20% 50%

0% 1 ∼0 ∼0 ∼0
10% - 1 0.234 0.011
20% - - 1 0.167
50% - - - 1

(b) 50 Nodes

0% 10% 20% 50%

0% 1 ∼0 ∼0 ∼0
10% - 1 0.671 0.312
20% - - 1 0.458
50% - - - 1

(c) 100 Nodes

The results in Section 6 show that RCGP is highly suited for partially observ-
able tasks. For both benchmarks it dramatically and statistically significantly
outperforms CGP.

Section 6 also showed that simply allowing mutation to create feed-forward or
recurrent connections with equal probability does not always produce the best
results. This is because it is unlikely that a given task will require fifty percent of
connections to be recurrent. The introduction of the recurrent connection prob-
ability parameter allows the user to bias mutations so as to produce greater or
fewer recurrent connections. It has been shown that using a recurrent connec-
tion probability of fifty percent (i.e. effectively not using the recurrent connection
probability parameter) produces poor results on the Artificial Ant benchmark
and causes over training on the Sunspot benchmark4. Using a recurrent connec-
tion probability of ten percent produced the best results on the Artificial Ant
benchmark and produce the best MAE on the testing set for the Sunspot bench-
mark. The recurrent connection probability is therefore an important additional
parameter when using RCGP.

8 Conclusion

RCGP is an extension to CGP which enables application to partially observ-
able tasks. On two partially observable benchmark problems, Artificial Ant and
Sunspot prediction, RCGP gives statistically significant improvements compared
with acyclic CGP. RCGP has been implemented using a recurrent connection
probability parameter which biases the number of recurrent connections created

4 Over training could be controlled via the use of a validation set but this was not
considered here.
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via mutations. This is introduced as simply allowing mutations to connect any
two nodes creates an unhelpful bias for as many feed-forward connections as re-
current. Further research is needed to compare the performance of RCGP with
other methods suited to partially observable problems and to apply RCGP to
additional domains; such as creating recurrent artificial neural networks.
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