
Recurrent Cartesian Genetic Programming
Applied to Famous Mathematical Sequences

Andrew James Turner1 and Julian Francis Miller2

1 The University of York, Electronics Department, andrew.turner@york.ac.uk
2 The University of York, Electronics Department, julian.miller@york.ac.uk

Abstract. Recurrent Cartesian Genetic Programming (RCGP) is a re-
cent extension to Cartesian Genetic Programming (CGP) which allows
CGP to create recurrent programs. This paper investigates using RCGP
to create recurrent symbolic equations which produce famous mathe-
matical sequences. The use of RCGP is contrasted with using standard
CGP which can only produce explicit solutions. The results demonstrate
that RCGP is capable of producing recursive equations for all the given
sequences whereas CGP cannot always produce explicit equations. It is
also discussed that since RCGP is a superset of CGP it should also be ca-
pable of finding explicit equations. Finally recommendations concerning
the initial conditions of RCGP programs are also discussed.

1 Introduction

There are numerous mathematical sequences [12] which have been of interest to
mathematicians for many years; as early as Archimedes (287 BC) where mathe-
matical sequences were used in his “Method of Exhaustion” [13]. Mathematical
sequences can be defined in two forms, either explicitly or recursively. An explicit
equation returns the nth value in a sequence when passed the value of n and a
recursive equation returns the nth value in a sequence on the nth iteration.

Cartesian Genetic Programming (CGP) [6] is a form of Genetic Programming
(GP) [4] which has previously being used to map explicit symbolic equations to
sequences of numbers [6, 8, 18]. Standard CGP has always been used to produce
explicit solutions as it is not capable of creating recurrent equations. However, a
recent extension to CGP, Recurrent Cartesian Genetic Programming [16], now
enables CGP to create arbitrary programs containing recurrence; including re-
current equations. This paper investigate applying CGP and RCGP to a number
of famous mathematical sequences in order to describe them using explicit and
recurrent symbolic equations. A separate extension to CGP, Self Modifying CGP,
has also previously been used to produce what could described as recurrent solu-
tions [2]. There the CGP chromosomes were able to reconfigure themselves when
executed in order to produced different behaviours upon future executions.

The remainder of the paper is structured as follows: Sections 2 and 3 describe
CGP and RCGP respectively, Section 4 describes the experiments presented
along with the famous mathematical sequences used, Section 5 gives the results
of the experiments and finally Sections 6 and 7 give a discussion and present our
conclusions.

2 Cartesian Genetic Programming

CGP [6, 8] is a form of GP [4] which typically evolves acyclic computational
structures of nodes (graphs) indexed by their Cartesian coordinates. CGP does
not suffer from bloat3 [5, 15]; a drawback of many GP methods [11]. CGP chro-
mosomes contain non-functioning genes enabling neutral genetic drift during
evolution [17]. CGP typically uses point or probabilistic mutation, no crossover
and a (1 + λ)-ES. Although CGP chromosomes are of static size, the number
of active nodes varies during evolution enabling variable length phenotypes (so-
lutions). The user therefore specifies a maximum number nodes, of which only
a proportion will be active. Overestimating the number of nodes has shown to
greatly aid evolution [7]; which is thought to heighten neutral genetic drift.

Each CGP chromosome is comprised of function genes (Fi), connection genes
(Ci) and output genes (Oi). The function genes represent indexes in a function
look-up-table and describe the functionality of each node. The connection genes
describe the locations from which each node gathers its inputs. For regular acyclic
CGP, connection genes may connect a given node to any previous node in the
graph, or any of the program inputs. The output genes address any program
input or internal node and define which are used as program outputs.

An example of a generic CGP chromosome is given in Equation 1; where α is
the arity of each node, n is the number of nodes and m is the number of program
outputs. An example CGP program is given with its corresponding chromosome
in Figure 1. As can be seen, all nodes are connected to previous nodes or program
inputs. Not all program inputs have to be used, enabling evolution to decide
which inputs are significant. An advantage of CGP over tree-based GP, again
seen in Figure 1, is that node outputs can be reused multiple times, rather than
requiring the same value to be recalculated if it is needed again. Finally, not all
nodes contribute to the final program output, these represent the inactive nodes
which enable neutral genetic drift and make variable length phenotypes possible.

F0C0,0...C0,αF1C1,0...C1,α FnCn,0...Cn,αO0...Om (1)

Fig. 1: Example CGP program corresponding to the chromosome: 012 233 124 4

3 Bloat is a phenomenon seen in many GP methods where the size of the evolved
programs grow continuously during evolution with little or no improvement in fitness.

3 Recurrent Cartesian Genetic Programming

In regular CGP chromosome connection genes are restricted to only allow con-
nections to previous nodes in the graph. In RCGP this restriction is lifted so as
to allow connections genes to connect a given node to any other node (including
itself) or program inputs. Once the acyclic restriction is removed, RCGP solu-
tions can contain recurrent connections or feedback. An example RCGP program
is given in Figure 2 along with its corresponding chromosome. Another simpler
but less flexible method of using CGP to create recurrent programs is to enforce
a Jordan type architecture [9]; where program outputs are fed back as inputs. A
slightly more complex multi-chromosome version of CGP has also been adapted
to be capable of creating transistor circuits which contain cyclic connections [19].

Fig. 2: Example RCGP program cosponsoring to the chromosome: 212 005 134 5

As described in [16], placing no restriction on connections genes results in
mutations creating as many recurrent as feed-forward connections. However, it
is likely that most problems do not require fifty percent of the connections to
be recurrent. For this reason a new parameter was introduced called recurrent
connection probability. This parameter controls the probability that a connection
gene mutation will create a recurrent connection.

RCGP chromosomes are interpreted identically to standard CGP. The inputs
are applied, each node is updated in order of index, and the outputs are read.
The next set of inputs are then applied and the process repeated. One important
aspect of RCGP, again described in [16], is that it is now possible for a node’s
output value to be read before it has been calculated. Here, as described in [16],
all nodes are set to output zero until they have calculated their own output
value. This is akin to the initial conditions in recursive equations.

4 Experiments

The experiments presented investigate if CGP and RCGP can be used to create
explicit and recurrent equations which describe a given sequence. The parameters
used by CGP and RCGP are given in Table 1. Although it is known that that
using a high number of nodes aids the evolutionary search [7], here a low number
of nodes are used so the evolved equations can be easily inspected i.e. are small.

All experiments are implemented and run using the development version4

of the cross platform open source CGP-Library [14]. A custom fitness function

4 The development version allows for recurrent connections whereas the current stable
release does not.

Table 1: CGP/RCGP Parameters
Parameter Value

Evolutionary Strategy (1+4)-ES
Max Generations 1,000,000
Nodes 20
Node Arity 2
Mutation Type probabilistic
Mutation Rate 5%
Recurrent Connection Probability 10% (for RCGP)
Function Set add, sub, mul, div

is used with the CGP-Library when assessing chromosome fitness. This fitness
function awards a score equal to the number of values in the training sequence
(100), minus the number of correct values predicted in sequence, minus 0.01 for
any further correct values after an incorrect value was predicted. Therefore lower
fitness represent a fitter solution.

When using CGP, the input to the chromosomes is n and the expected output
is the nth value in the sequence. When using RCGP the input is fixed at the value
of one and the chromosome is updated multiple times to produce a sequence
of numbers. When the chromosome is updated n times it should produce, in
order, the first n values in the sequence. It would also be possible to use RCGP
and input the value n instead of the constant one. In this case RCGP could
produce explicit as well as recurrent solutions. Here however, RCGP was forced
to produce recurrent solutions.

The famous mathematical sequences used by the experiments are now intro-
duced.

4.1 Hexagonal Numbers

The Hexagonal number sequence, A000384 from [12], is the number of dots which
make up a sequence of hexagons and all the hexagons it contains; see Figure 3.
It is defined explicitly by Equation 2 where n ≥ 1. This produces the following
sequence: 1,6,15,28,45,66,91,120,153,190,...

y(n) =
2n(2n− 1)

2
(2)

4.2 Lazy Caterers Sequence

The Lazy Caterers Sequence (or more formally the central polygonal num-
bers), A000124 from [12], is the number of pieces a cake can be divided into
with n cuts. The sequence is shown graphically in Figure 3 and described ex-
plicitly by Equations 3; where n ≥ 0. This produces the following sequence:
1,2,4,7,11,16,22,29,37,46,...

y(n) =
n2 + n+ 2

2
(3)

4.3 Magic Constants

The sequence of Magic Constants, A006003 from [12], are the values each row,
column and diagonal of a n × n magic square5 can sum to. The magic squares
corresponding to n=3, 4 and 5 are given in Figure 3. The sequence is described
explicitly by Equations 4; where n ≥ 1. This produces the following sequence:
1,5,15,34,65,111,175,260,369,505,...

y(n) =
n(n2 + 1)

2
(4)

4.4 Fibonacci

The Fibonacci sequence, A000045 from [12], is such that each value is the sum of
the previous two value; where the first two values are set as one. The sequence is
described explicitly in Equation 5, but is more commonly given recursively such
as in Equation 6. This produces the following sequence: 1,1,2,3,5,8,13,21,34,55,...

y(n) =
(1 +

√
5)n − (1−

√
5)n

2n
√

5
(5)

y(n) =

{
1, if n ≤ 1

y(n− 1) + y(n− 2), otherwise
(6)

5 Results

The results of applying CGP and RCGP towards producing number sequences
are now presented. All of the results given are the average of fifty independent
runs.

5.1 Hexagonal

CGP found an explicit solution to the Hexagonal sequence in all of the fifty runs
using an average of 2,481 evaluations6. The solutions found used an average of
5.44 active nodes. An example explicit solution found using CGP is given in
Figure 4. RCGP found a recursive solution to the Hexagonal sequence in all of
the fifty runs using a average of 39,279 evaluations. The solutions found used an
average of 10.60 active nodes. An example recurrent solution found using RCGP
is given in Figure 4.

5 A magic square is an n×n grid of numbers where the sum of each row, column and
diagonal is the same value.

6 The number of evaluations is the number of solutions (chromosomes) evaluated be-
fore a solution is found.

(a) Hexagonal Numbers (n=1,2,3,4)

(b) Lazy Caterers Numbers (n=0,1,2,3)

(c) Magic Constants (n=3,4,5)

Fig. 3: Number sequences given graphically.

5.2 Lazy Caterer

CGP did not find an explicit solution to the Lazy Caterer sequence in any of
the fifty runs. However, an explicit solution, using CGP was found in a longer
run and is given in Figure 57. RCGP found a recursive solution to the Lazy
Caterer sequence in 48 of the 50 run using a average of 7,626 evaluations. The
solutions found used an average of 10.53 active nodes. An example recurrent
solution found using RCGP is given in Figure 5.

5.3 Magic Constants

CGP found an explicit solution to the Magic Constants sequence in all of the fifty
runs using an average of 557,592 evaluations. The solutions found used an average
of 8.52 active nodes. An example explicit solution found using CGP is given in
Figure 6. RCGP found a recursive solution to the Magic Constants sequence in
43 of the 50 runs using a average of 686,929 evaluations. The solutions found
used an average of 12.79 active nodes. An example recurrent solution found using
RCGP is given in Figure 6.

5.4 Fibonacci

CGP could not find an explicit solution to the Fibonacci sequence in any of the
fifty runs. RCGP found a recursive solution to the Fibonacci sequence in all of

7 Found by repeatedly running CGP with 10,000,000 generations until a solution was
found.

Input 0

(0) mul (0)

 (1)
(2) sub (1)

(1) add
 (0)
 (1) (0)

Output 0

(a) CGP

Input 0
(0) sub

 (0)

 (1)

(1) mul
 (0)

 (1)

(4) add (1)

(2) sub
 (1)

(3) add
 (0)
 (1)

 (0)

(7) add (0)

(5) add
 (0)

(6) add
 (1)

 (0)

Output 0

 (0)

 (1)

 (1)

(b) RCGP

Fig. 4: Example CGP and RCGP Hexagonal solutions.

Input 0 (0) mul (0)
 (1)

(2) mul (1)

(3) add
 (1)

(1) div
 (0)

 (1)

(4) div
 (1)

 (0)

 (0) (7) add

 (0)

 (0)

(6) div (0)

(5) add

 (0)

 (1)

 (1)

 (1) Output 0

(a) CGP

Input 0

(0) div (0)

 (1)

(1) div
 (1)

(2) div

 (0)

 (0)

(5) sub

 (0)

 (1) (4) sub
 (1)

(3) div (1)
 (0)

(6) sub (0)

 (0)

 (1)

Output 0
 (1)

(b) RCGP

Fig. 5: Example CGP and RCGP Lazy Caterer solutions.

the fifty runs using a average of 27,075 evaluations. The solutions found used an
average of 12.00 active nodes. An example recurrent solution found using RCGP
is given in Figure 7.

As other GP methods have also been previously applied to the Fibonacci
sequence a comparison can be made. However it should be noted that the im-
plementations used are very different between methods e.g. the length of the
sequences used, the use of training and testing sets, the percentage of runs which
found a solution. Therefore only a very superficial comparison can be made. The
results of this comparison are given in Table 2 where RCGP is shown to be very
competitive.

6 Discussion

For all of the sequences investigated RCGP managed to find recurrent solutions
for the majority of runs. CGP however failed to find explicit solutions to the Lazy
Caterers sequence and the Fibonacci sequence. It is unsurprising that CGP could

Input 0

(0) div (0)

 (1)
(2) div

 (0)

(3) mul
 (0)

 (1)

(5) sub

 (1)

(1) add (0)
 (1)

 (1)
(4) mul (1)

 (0)

 (0)

(6) sub
 (0)

 (1) Output 0

(a) CGP

Input 0

(0) add

 (0)

(1) add

 (1)

(6) add

 (1)

(5) add

 (1)

(2) add (0)
 (1)

(4) sub

 (0)

(7) sub (1)

 (1)

(3) add

 (0)

Output 0

 (0)

 (1)

 (0)

 (0)

 (0)
 (1)

(b) RCGP

Fig. 6: Example CGP and RCGP Magic Constants solutions.

Input 0

(0) div (0)

 (1)
(1) add

 (0)
(2) add

 (0)

(3) sub

 (1)

(6) mul

 (0)

 (1) (7) mul

 (0)

 (0) (1)(5) add (1)

 (1)

(4) mul (1) (0)

 (0)

 (1)

Output 0

Fig. 7: Example RCGP Fibonacci solution.

not find a explicit solution for the Fibonacci sequence as it cannot be easily
defined explicitly. However, it was surprising that CGP failed to find explicit
solutions to the Lazy Caterers sequence which can easily be defined explicitly.
It is likely that the task was harder than anticipated and CGP required more
nodes and more generations to find solutions. It was also shown for the Fibonacci
sequence that RCGP produces very competitive results compared to other GP
techniques.

Interestingly not all sequences have explicit forms, for instance many chaotic
sequences do not. Therefore there will be sequences which can never be described
using standard CGP. It is also likely to be true that certain sequences are more
easily described explicitly or recursively. For instance CGP found explicit solu-
tions much faster for the Hexagonal sequence, whereas RCGP found recurrent
solutions much more easily for the Lazy Caterers sequence; which can both be
easily defined explicitly or recursively. A benefit of RCGP, not explored in this
paper, is that RCGP can create acyclic and cyclic programs. In the research
presented here RCGP was forced to produce recurrent solutions, by fixing the
input, but it is generally capable of producing feed-forward and recurrent so-

Table 2: GP methods: Fibonacci Sequence
Method Evaluations

RCGP 27,075
Multi-niche Genetic Programming [10] 200,000
Probabilistic Adaptive Mapping Developmental GP [20] 212,000
SMCGP [2] 1,000,000
Machine Language Programs [3] 1,000,000
Object Oriented GP [1] 20,000,000

lutions. Therefore in situations where it is was not known whether an explicit
solution is possible, RCGP could be applied. If a given sequence is more easily
described explicitly then this should, in theory, produce an evolutionary pres-
sure to produce explicit solutions. If a given sequence is more easily described
recursively then RCGP is also capable of finding a recursive solution.

It was noticed that many solutions found contained addition nodes with
their outputs fed back as an input; such as node (5) in Figure 7. As all nodes
are initialised to output zero before they calculate their own output value, this
has the effect of implementing a summation; where the output of node (5) is the
running sum of all the previous outputs of node (4). This interesting behaviour
also hold for subtraction. However it does not hold for multiplication as the
node is also initialised to output zero; if a multiplication node’s output were fed
back as an input it would forever output zero. It is therefore possible that simpler
recurrent equations could be formed if multiplication nodes could be used to store
the product of previous inputs; akin to how addition nodes store the summation.
This can be achieved by initialising multiplication nodes to output one until
they have calculated their own output value. Then multiplication nodes could be
arranged such that they produce the product of previous inputs; the same would
also be true for division. It is therefore recommended that future developments
of RCGP should initialise addition and subtraction nodes to output zero and
multiplication and division nodes to output one. It may also be the case that
other node functions benefit from being initialised to specific values and this
should be considered when extending the function set.

7 Conclusion

This paper has demonstrated the use of RCGP for producing recurrent symbolic
equations which describe famous mathematical sequences. It has been shown
that CGP is only capable of producing explicit solutions. It has been shown that
RCGP is capable of producing recursive solutions and is also capable of pro-
ducing explicit solutions. It is therefore concluded, given that not all sequences
have explicit forms, that RCGP is a more general solution to producing symbolic
equations which describe mathematical sequences.

It was also identified that RCGP often arranged addition nodes so as to
implement efficient summation operations. Currently, due to all nodes being

initialised to output zero, this ability does not extend to multiplication nodes
producing product operations. Therefore it is recommended that in future work
multiplication nodes should be initialised to output one enabling multiplication
nodes to produce product operations.

References

1. Agapitos, A., Lucas, S.M.: Learning recursive functions with object oriented genetic
programming. In: EuroGP’06. pp. 166–177 (2006)

2. Harding, S., Miller, J.F., Banzhaf, W.: Self Modifying Cartesian Genetic Program-
ming: Fibonacci, Squares, Regression and Summing. In: EuroGP’09. pp. 133–144
(2009)

3. Huelsbergen, L.: Learning recursive sequences via evolution of machine-language
programs. In: GP’97. p. 186194 (1997)

4. Koza, J.R.: Genetic Programming: vol. 1, On the programming of computers by
means of natural selection, vol. 1. MIT press (1992)

5. Miller, J.F.: What bloat? Cartesian genetic programming on Boolean problems.
In: GECCO’01. pp. 295–302 (2001)

6. Miller, J.F.: Cartesian Genetic Programming. Springer (2011)
7. Miller, J.F., Smith, S.: Redundancy and computational efficiency in Cartesian ge-

netic programming. Evolutionary Computation 10(2), 167–174 (2006)
8. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: EuroGP’00. vol.

1820, pp. 121–132 (2000)
9. Minarik, M., Sekanina, L.: Evolution of iterative formulas using Cartesian genetic

programming pp. 11–20 (2011)
10. Nishiguchi, M., Fujimoto, Y.: Evolution of recursive programs with multi-niche ge-

netic programming (mngp). In: Evolutionary Computation IEEE World Congress
on Computational Intelligence. p. 247252 (1998)

11. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and
a review of past and current bloat theories. GPEM 10(2), 141–179 (2009)

12. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences (Aug 2014),
http://oeis.org/

13. Smith, D.E.: History of mathematics, vol. 1. Courier Dover Publications (1958)
14. Turner, A.J., Miller, J.F.: Introducing A Cross Platform Open Source Cartesian

Genetic Programming Library. GPEM (2014), to Appear
15. Turner, A.J., Miller, J.F.: Cartesian Genetic Programming: Why No Bloat? In:

EuroGP’14. pp. 193–204 (2014)
16. Turner, A.J., Miller, J.F.: Recurrent Cartesian Genetic Programming. In:

PPSN’14. pp. 476–486 (2014)
17. Vassilev, V.K., Miller, J.F.: The Advantages of Landscape Neutrality in Digital

Circuit Evolution. In: Evolvable Systems. pp. 252–263 (2000)
18. Walker, J.A., Miller, J.F.: Predicting prime numbers using Cartesian Genetic Pro-

gramming. In: Genetic Programming, pp. 205–216 (2007)
19. Walker, J.A., Völk, K., Smith, S.L., Miller, J.F.: Parallel evolution using multi-

chromosome cartesian genetic programming. Genetic Programming and Evolvable
Machines 10(4), 417–445 (2009)

20. Wilson, G., Heywood, M.: Learning recursive programs with cooperative coevolu-
tion of genetic code mapping and genotype. In: GECCO’07. pp. 1053–1061 (2007)

